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Bayesian inference is an appealing alternative to maximum likelihood estimation, but estimation can be prohibitively long for integrated fish-
eries stock assessments. Here, we investigated potential causes of long run times including high dimensionality, complex model structure, and
inefficient Bayesian algorithms for four US assessments written in AD Model Builder (ADMB), both custom built and Stock Synthesis models.
The biggest culprit for long run times was overparameterization and they were reduced from months to days by adding priors and turning off
estimation for poorly-informed parameters (i.e. regularization), especially for selectivity parameters. Thus, regularization is a necessary step in
converting assessments from frequentist to Bayesian frameworks. We also tested the usefulness of the no-U-turn sampler (NUTS), a Bayesian
algorithm recently added to ADMB, and the R package adnuts that allows for easy implementation of NUTS and parallel computation. These
additions further reduced run times and better sampled posterior distributions than existing Bayesian algorithms in ADMB, and for both of
these reasons we recommend using NUTS for inference. Between regularization, a faster algorithm, and parallel computation, we expect mod-
els to run 50–50 000 times faster for most current stock assessment models, opening the door to routine usage of Bayesian methods for man-
agement of fish stocks.
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Introduction
Fisheries stock assessment models are population dynamics models

used to explore the effects of management actions on fish popula-

tions (Hilborn and Walters, 1992). Varied data availability, fish life

histories, and fishery properties drive a wide range of models for

fish dynamics. Currently, the state-of-the-art approach for

data-rich stocks is integrated analysis, where non-linear statistical

models incorporate multiple data sources (e.g. Maunder and Punt,

2013). Integrated models vary in dimensionality and internal struc-

ture (“complexity”), and our focus here is on the most complex

integrated stock assessments used for management. Integrated

models are typically written in the programming framework AD

Model Builder (ADMB; Fournier et al., 2012), and can be purpose-

built for a particular stock (e.g. Szuwalski and Turnock, 2016) or

be generic such as the widely-used Stock Synthesis (Methot and

Wetzel, 2013). Regardless of the specifics, integrated models

attempt to infer biological and fishery processes from complex,

varied data, and are a vital tool to inform management.

Integrated models have been estimated in both the frequentist

and Bayesian statistical paradigms (Punt and Hilborn, 1997;

VC International Council for the Exploration of the Sea 2019. All rights reserved.
For permissions, please email: journals.permissions@oup.com

ICES Journal of Marine Science (2019), doi:10.1093/icesjms/fsz059

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/advance-article-abstract/doi/10.1093/icesjm
s/fsz059/5475859 by N

O
AA C

entral Library user on 24 July 2019

http://orcid.org/0000-0003-0871-6700
mailto:monnahc@uw.edu.


Maunder, 2003). There are key philosophical differences between

these paradigms, such as the definition of probability, sources of

information, and interpretation of uncertainty statements (e.g. de

Valpine, 2009; Gelman et al., 2014), and practical difficulties with

Bayesian integration (e.g. Thorson and Cope, 2017). Here, we fo-

cus on technical differences in the estimation of parameters and

uncertainty. The frequentist approach is popular for complex

models because it is generally faster and has reliable parameter

estimates. However, Magnusson et al. (2013) showed that

Bayesian estimates of uncertainty are more reliable than frequent-

ist estimates and recommend Bayesian methods as the default, al-

though Stewart et al. (2013) argued that both methods have

advantages. The Bayesian approach also offers a formal way to in-

corporate prior information from previous studies or expert

opinion, and is a natural framework for estimating probabilities

of hypotheses and performing decision analyses (Punt and

Hilborn, 1997). Despite this, prohibitively long run times of the

order of days to months have limited their practical use for man-

agement of data-rich stocks (but see Grandin et al., 2016) because

exploring model sensitivity and evaluating different cases during

development or the review process is difficult (Cotter et al.,

2004). Therefore, although there are compelling reasons to per-

form Bayesian analyses on stock assessments, the time needed to

make inference is a major obstacle.

Differences in run times between the two paradigms are related

to how inference is made. The frequentist approach uses only in-

formation from the data likelihood and involves estimating

parameters using maximum likelihood. Uncertainty in parame-

ters is estimated by assuming asymptotic normality and inverting

the Hessian matrix evaluated at the maximum likelihood estimate

(MLE). The uncertainty of derived quantities such as maximum

sustainable yield is estimated using the delta method (Magnusson

et al., 2013). For Bayesian inference, the likelihood is combined

with prior distributions to form the posterior probability distri-

bution. Posterior probability statements for parameters and de-

rived quantities are then approximated from posterior samples,

typically generated with Markov chain Monte Carlo (MCMC)

algorithms (Gelman et al., 2014). Long Bayesian run times gener-

ally arise from the need to approximate integrals of a complex,

high-dimensional probability distribution by evaluating the

model hundreds of thousands to tens of millions of times via

MCMC. The easiest way to reduce run time is to decrease time

per evaluation through strategies such as buying faster computers

or using courser approximations to the population dynamics

(Monnahan et al., 2016; Szuwalski, 2016). Although helpful, these

options are not likely to reduce run time by orders of magnitude

as required. Instead, we focus on improving MCMC algorithm ef-

ficiency, which is a more general and promising approach.

The most popular algorithm within ADMB is a modified

“random-walk” Metropolis algorithm (RWM; Metropolis et al.,

1953), which is inefficient for higher dimensions and for hierar-

chical models. Recently, a new MCMC algorithm was added to

ADMB (Monnahan and Kristensen, 2018) called the no-U-turn

sampler (NUTS; Hoffman and Gelman, 2014), which efficiently

samples from high-dimensional and complex posterior geome-

tries and is widely used in diverse applied statistical fields

(Monnahan et al., 2017). NUTS is a variant of the Hamiltonian

Monte Carlo family of MCMC algorithms (HMC; Neal, 2011),

which automates tuning of the step size and trajectory lengths by

the analyst and this flexibility makes it a good option for generic

inference. HMC algorithms, including NUTS, are powerful

because they use posterior gradient information to generate dis-

tant proposals and reduce autocorrelation. Importantly, NUTS is

also more robust to bias arising from approximating the posterior

distribution with finite MCMC samples because divergences warn

when extreme curvature exists in the posterior that can lead to

bias (Betancourt, 2017; Monnahan et al., 2017). A thorough ex-

planation of NUTS is beyond the scope of this study, so we refer

to interested readers to introductory material referenced above.

The other HMC algorithms available in ADMB are generally less

efficient and not explored here. Both RWM and NUTS are tuned

to increase efficiency, and this is a key approach for reducing run

time. The most important tuning parameter in ADMB is the use

of information about the global geometry of the posterior

(Supplementary Appendix A). In the HMC literature, this infor-

mation is encoded in the “mass matrix”, and rotates and scales

the posterior to improve sampling (Neal, 2011). A similar ap-

proach is used by ADMB for the RWM algorithm, which uses the

estimated covariance matrix (i.e. the inverted Hessian matrix) as

the mass matrix by default. In general, both algorithms will be

more efficient when the posterior resembles independent stan-

dard normal distributions, and this will be true if the mass matrix

closely approximates the posterior and is multivariate normal. If

the mass matrix does not approximate the posterior well (we refer

to this as “mismatched mass matrix”) then sampling will be less

efficient (Supplementary Appendix A).

Efficiency can also be improved by changing the geometry of

the posterior. One way to accomplish this is to reparameterize a

component of the model, such as somatic growth, to a form

more suitable for statistical estimation (e.g. Schnute, 1981).

Another is to add informative priors or fix parameters (i.e. as-

suming a potentially estimable parameter to be constant), which

we refer to as “regularization”, adding more information and ef-

fectively constraining the geometry of the posterior.

Reparameterization and regularization influence run time be-

cause it effects the estimated mass matrix (Supplementary

Appendix A), which is a key tuning parameter, but also because

Bayesian inference requires integrating the entire posterior, and

the geometry of areas with low posterior probability (the “tails”

of the distribution) often determines efficiency. Although not ex-

plored in the stock assessment literature, geometric properties

can have profound impacts on run time and may be undetectable

by examining only the mode. Regularization is particularly im-

portant when stock assessments lack explicit priors, such as when

designed for maximum likelihood estimation, and when models

are overparameterized (i.e. have poorly-informed parameters) or

are poorly-parameterized (correlations, which make estimation

difficult).

Overparameterization can occur in many ways, especially given

the diversity of stock assessments, but here we highlight two sour-

ces. First is fisheries selectivity, which and often has either the lo-

gistic form or a “dome-shaped” increase with a subsequent

decrease (e.g. Sampson et al., 2011). Consequently, flexible para-

metric shapes such as the six-parameter “double-normal” shape

are widely used (Methot, 2015). However, the way the curve is

parameterized, and the defaults used by most analysts, present

some challenges in the context of Bayesian integration. For in-

stance, if the estimated curve is asymptotic, the parameter con-

trolling the top of the descending limb has virtually no effect on

the selectivity curve, leading to fat tails that do not negatively af-

fect MLEs (which are often estimated at a lower or upper bound)

but present a difficult geometry for Bayesian algorithms. The
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second case is when true biological or fishery processes vary with

time, which can have important consequences for management

quantities (e.g. Thorson et al., 2015b; Stewart and Monnahan,

2017). A variety of approaches are used to model these processes

in stock assessments (e.g. Methot and Wetzel, 2013), including

the use of random effects, meaning that processes are drawn from

a hyperdistribution (e.g. Thorson and Minto, 2015). A common

example is annual recruitment deviations around the stock re-

cruit curve, but time-varying processes like catchability and selec-

tivity can also be modelled with this approach (e.g. Thorson and

Wetzel, 2015; Stewart et al., 2016). Use of random effects typically

greatly increases the dimensionality of the model, and estimating

hypervariances is difficult and rarely done in frequentist ADMB

models (Thorson et al., 2015a). Sophisticated parametrizations

for selectivity and time variation are more likely, to closely, reflect

the reality of the biology and fishery, but the added structural

complexities can have important negative consequences for the

statistical integration necessary for Bayesian inference.

Despite the advantages of Bayesian inference, no previous stud-

ies have addressed the problem of prohibitively long run times of

Bayesian inference in integrated assessments, and as a result, the

application of Bayesian inference for fisheries management is lim-

ited. In this study, we investigate causes for long run times for a

set of stock assessments varying in size, complexity, and structure

(age- and length-based). We first highlight the critical role of pos-

terior geometry away from the mode in determining run time,

present practical guidelines for diagnosing geometric properties

that lead to slow mixing and show how to mitigate these issues to

substantially reduce run time. Then, we contrast the newly avail-

able NUTS algorithm to the status quo RWM algorithm in their

relative efficiencies and ability to avoid parameter bias. Finally, we

compare the estimated uncertainties in key derived management

quantities between frequentist and Bayesian paradigms for four

case studies.

Methods
Case studies
We chose our case studies to reflect the fact that integrated stock

assessments can vary widely in size, complexity, and structure

(Tables 1 and 2). We chose age- and length-structured models,

custom built and Stock Synthesis models, and models with time-

varying components. Some chosen models were expected to mix

efficiently, whereas others were expected to be slow.

Hake model: the Pacific hake (Merluccius productus) assessment

(Grandin et al., 2016) uses Bayesian inference for management

via the RWM algorithm and has been the subject of a past study

comparing frequentist and Bayesian inference (Stewart et al.,

2013). This model converges successfully using runs of 12 million

thinned every 10 000 samples. Individual model evaluations are

rapid because the model uses an empirical weight-at-age ap-

proach that does not need to track length dynamics internally

(e.g. Kuriyama et al., 2016).

Halibut model: Pacific halibut (Hippoglossus stenolepis) man-

agement uses four models to assess the stock, and here we use the

coastwide model based on a short time-series (Stewart and

Martell, 2015; Stewart et al., 2016). This model is parameterized

to use empirical weight-at-age data, random walks for temporal

variation in catchability and selectivity, and early recruitment

deviations to allow for non-equilibrium in the initial age

structure.

Canary model: the canary rockfish (Sebastes pinniger) assess-

ment (Thorson and Wetzel, 2015) includes three areas and has

random deviations relating the proportion of recruitment going

to each area, which is implemented as an additive effect in

multivariate-logit space (Methot, 2015). This model estimates 12

selectivity curves, many with the double-normal pattern, and has

conditional age-at-length data that causes very slow model

evaluations.

Snowcrab model: the model for Eastern Bering Sea snow crab

(Chionoecetes opilio) is size-structured, was custom built for this

particular stock (Szuwalski and Turnock, 2016), and has more

parameters than any of the other models (n¼ 334). The model

tracks numbers at size by sex, maturity state, and shell condition,

and simultaneously estimates a size transition matrix based on

laboratory observations of pre- and post-moult lengths.

Calculating baseline efficiency
The initial efficiency (defined below) of the case studies was esti-

mated as a baseline to compare relative improvements. For each

model, we calculated efficiency as if from a single RWM chain,

initialized from posterior draws from a previous run

(Supplementary Appendix B) for 3 million iterations, discarding

Table 1. Summary of case studies used.

Model
name

No. of
parameters

Speed
(s 1000� 1 evals) Brief description Species and reference

Hake 217 8.71 MCMC results used for management, empirical
weight-at-age, Stock Synthesis

Pacific hake; Merluccius productus (Grandin
et al., 2016)

Halibut 195 24.06 Time-varying catchability, empirical weight-at-age,
Stock Synthesis

Pacific halibut; Hippoglossus stenolepis
(Stewart et al., 2016)

Canary 304 188.10 Time-varying growth, three areas with different
exploitation history but no movement, natural
mortality varies by age for males, complex
selectivity with 31 fleets, Stock Synthesis

Canary rockfish; Sebastes pinniger (Thorson
and Wetzel, 2015)

Snow crab 334 18.57 Length-structured, custom built, considerations
for sex, maturity state, and shell condition,
growth per moult data available

Eastern Bering Sea snow crab; Chionoecetes
opilio (Szuwalski and Turnock, 2016)

Speed is how many seconds 1000 model evaluations take and is calculated as warmup and sampling time (but not optimization) divided by the total iterations
during a RWM runs in which gradients are not calculated.
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the initial 25% as a burn-in period during which the algorithm

tunes and the samples are not valid, then thinning to save every

1000th iteration, which helps post-processing but discards infor-

mation (Link and Eaton, 2012). We used the R package adnuts

for these analyses, which provides a convenient framework and

improved workflow for Bayesian inference in ADMB within the R

software framework (Monnahan, 2018; R Core Team, 2018). We

estimated the number of effective samples for each model param-

eter, which accounts for autocorrelation, using the function

monitor in the rstan package (Stan Development Team, 2018)

then defined MCMC efficiency as the minimum effective sample

size of post-warmup samples (across parameters) divided by total

run time. This can roughly be thought of as the time to obtain an

independent sample from the posterior, and is a standard ap-

proach used in other studies (e.g. Hoffman and Gelman, 2014;

Monnahan et al., 2017). We excluded compilation and optimiza-

tion time but included warmup and sampling periods. Models

were also compared using the time required to obtain 1000 effec-

tive samples, which is usually large enough to make good approx-

imations for many key management quantities, including relative

probabilities in the tails of the posterior with little Monte Carlo

error. We provide R code demonstrating how to calculate both

the efficiency and time to get 1000 samples in our demo workflow

(Supplementary Appendix B). As with any Bayesian analysis, be-

fore making management inference in a real analysis, the samples

should also be checked for signs of non-convergence using stan-

dard diagnostics such as potential scale reduction R̂ (Gelman

et al., 2014). We ran parallel chains with adnuts, but calculated

baseline efficiency as if from a single chain to simulate the tradi-

tional approach of using a single command line run to obtain

posterior samples.

Improving efficiency with regularization
The first step in diagnosing inefficiencies was to examine the

baseline “pilot” chains, using the workflow described above, and

visually assessing geometric issues with the posterior by plotting

pairwise posterior correlations for the slowest mixing parameters.

Based on this feedback, we then used the following guidelines to

regularize the posterior. We fixed parameters (i.e. assume a con-

stant value) at their MLE when standard errors were unreliably

estimated (common at bounds), added stronger priors or fixed

parameters, which were not informative, or reparameterized

where possible (e.g. if using double-normal selectivity curves, but

selectivity curves are asymptotic, convert them to logistic curves,

Supplementary Appendix B). After regularizing, we re-ran the pi-

lot chains and iterated this regularization process, usually around

five times, until each case study showed well-behaved geometries

(i.e. no parameters with very low effective sample sizes). Clearly,

it was beyond the scope of this paper to reformulate four stock

assessment models while maintaining continuity with manage-

ment practices. Instead, we strongly regularized the models with

the goal of maintaining similar behaviour at the mode but im-

proving it in the tails. These regularized models are a proof of

concept for potential improvements and may differ somewhat

from official stock assessments used for management.

Comparing performance between RWM and NUTS
We assessed efficiency for our regularized case studies by running

RWM and NUTS chains with the default mass matrix (i.e. the es-

timated covariance at the MLE, Supplementary Appendix A).

NUTS chains were run for 3000 iterations and no thinning (be-

cause the NUTS chains have low autocorrelation) and using a

warmup of 20% (<50% recommended in Stan because mass ma-

trix adaptation is not done, see Supplementary Appendix A). We

chose RWM chain lengths to ensure runs were similar in time du-

ration to NUTS chains, and we compared the efficiency of the

algorithms. Lastly, we re-ran NUTS with an updated mass matrix

calculated as the empirical covariance of posterior samples from a

previous run, which easy to do with adnuts for both algorithms

(Supplementary Appendix B). We expected that using an im-

proved tuning parameter in this way would more efficiently sam-

ple from the posterior when the estimated covariance did not

accurately reflect the posterior geometry (Supplementary

Appendix A). This procedure does not affect the resulting poste-

rior, only the efficiency at which samples are generated. Since ini-

tial exploration showed no improvement for the RWM

algorithm, we only focused on improvements to NUTS.

Results
Calculating baseline efficiency
We found the RWM pilot chains of the original models and de-

fault settings mixed poorly and failed to converge ðR̂ > 1:1Þ for

Table 2. The effect of regularization (adding priors and turning off estimation of parameters) on MLEs (and standard errors) of key
management targets.

Model Quantity Original Regularized % Change

Hake Depletion (2015) 0.71 (0.20) NA NA
OFL (2015) 2.51Eþ6 (6.43Eþ5) NA NA
MSY 8.41Eþ5 (2.50Eþ5) NA NA

Halibut SSB (2000) 4.67Eþ5 (3.17Eþ4) 4.64Eþ5 (2.63Eþ4) �0.6% (�17.1%)
SSB (2010) 1.82Eþ5 (1.56Eþ4) 1.79Eþ5 (1.37Eþ4) �1.6% (�12.0%)
SSB (2015) 1.90Eþ5 (1.88Eþ4) 1.86Eþ5 (1.69Eþ4) �2.0% (�10.1%)

Canary Depletion (2015) 0.63 (0.08) 0.63 (0.08) 0.8% (�0.2%)
OFL (2015) 1952.72 (293.43) 1969.56 (292.43) 0.9% (�0.3%)
SSB (2015) 3297.16 (274.23) 3292.75 (271.59) �0.1% (�1.0%)

Snowcrab Depletion (2015) 1.38 (0.12) 1.41 (0.12) 1.8% (�5.5%)
OFL (2015) 28.28 (3.50) 29.82 (3.51) 5.4% (0.3%)
MSY 300.92 (16.68) 311.69 (16.64) 3.6% (�0.3%)

Spawning-stock biomass (SSB), depletion (biomass relative to unfished state), overfishing limit (OFL), and MSY are common management metrics on the US
West Coast.
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all but the Hake model. These results cannot be used for inference

but can be extrapolated to determine it would take at minimum

days and up to more than 2 years for the Canary model to gener-

ate 1000 effective samples (Table 3). Long runtimes were partly

because each iteration was slow, particularly for the Canary

model, which uses conditional age-at-length data (Table 1).

However, a more important component was the overparameteri-

zation that occurred in all but the Hake model (Figure 1). For in-

stance, the double-normal selectivity in the Canary model had

long tails (Figure 2). Another common occurrence was a mis-

matched mass matrix, sometimes caused by an MLE at a bound,

resulting in the underestimation of the variance of that parame-

ter, or a poorly-informed parameter for which the variance was

vastly overestimated (Figure 3), resulting in a poorly tuned

algorithm.

Improving efficiency with regularization
Another mismatched mass matrix issue we found was locally

varying correlations between parameters, as typified by early re-

cruitment deviations in the Halibut model (Figure 4), where the

model could not distinguish age classes when the data supporting

a large recruitment come from sparse age distributions. In such

cases, a large recruitment in year y and a small one in year yþ 1

or a small one in y and large one in yþ 1 can explain equally

plausibly the subsequent number of fish observed. Ageing error

can also lead to difficulty in distinguishing recruitment strength.

The core issue is not a single correlation but correlation between

sequential parameters: y is correlated with yþ 1, yþ 1 to yþ 2,

etc., which causes an extreme posterior geometry (Supplementary

Figure S1) that is poorly approximated by a global mass matrix.

In such cases, the RWM chains were biased because they were un-

able to explore part of the posterior (Figure 4). We added arbi-

trary normal priors to these recruitment deviations during

regularization to eliminate this geometry (Figure 4), an approach

similar to VPA models where it was sometimes assumed that the

oldest age classes at the beginning of the modelled period were

equal to the mean recruitment decayed to that age (e.g. Quinn

and Deriso, 1999). We found similar correlations for some pairs

of selectivity parameters, but these were not as detrimental to

mixing as the recruitment parameter correlations in the Halibut

model.

The regularization process detailed above took about five itera-

tions to successfully update the models, and steps differed among

the three models (Supplementary Appendix C). We constrained a

variety of selectivity parameters and early recruitment deviations

in the Halibut model, and selectivity and recruitment

apportionment deviations in the Canary model. The Snowcrab

model required the greatest variety of changes, including growth

parameters, mortality deviations, and recruitment deviations, but

few changes to selectivity parameters. After following the regulari-

zation procedure (except for the Hake model), the models mixed

substantially better (Figure 5), passing convergence tests and with

relatively minor changes to management outputs (Table 2). The

Halibut, Canary, and Snowcrab models were 507, 144, and 17

times faster after regularization compared with the status quo

MCMC approach, respectively (Table 3), and had R̂ < 1:1 and

high effective sample sizes.

Comparing performance between RWM and NUTS
NUTS was generally faster than RWM on the regularized models

using default settings (i.e. using the inverted Hessian as mass ma-

trix) and passed convergence tests (Rhat< 1.1) as well as minimal

divergences and no max treedepths exceeded. When using an

updated mass matrix, NUTS speed improved again over the de-

fault settings up to 172 times faster for the Snowcrab model

(Table 3) and had <1% divergences and treedepths well below

the maximum of 12. Taken together, the improvements to the

models from the best-case scenario (NUTS with updated mass

matrix and four parallel chains) vs. the status quo (single RWM

chain using inverted Hessian mass matrix) there were substantial

improvements: 74, 13 741, 10 772, and 72 706 times faster for the

four models, reducing run times to obtain 1000 independent

samples from a range of 18.6 h—years to 15 min—12.5 h for the

four models (Table 3). The updated NUTS chains generally

mixed well with few iterations needed for all models. Only the

Canary model required more than an hour for sufficient conver-

gence under ideal circumstances because of the increased compu-

tational time from the conditional age-at-length structure (ten

times longer than other models; Table 1).

Differences in key management quantities between statistical

paradigms were small except for the Hake model (Figure 6),

where Bayesian posterior medians were much higher (between

14.4 and 24.9%) while the corroborating Stewart et al.

(2013).Halibut model was consistently higher by �4–5%. In con-

trast the differences in the Canary model were negative for deple-

tion and the overfishing limit (�3.4 and �7.1%) but positive for

MSY (1.1%). The Snowcrab model had the smallest differences,

all less than 62%.

Discussion
Bayesian inference for data-rich stocks is rarely used for applied

management advice because of prohibitive run times. Our goal

Table 3. The estimated time to get 1000 effective samples for different models and algorithms and speed relative to the original model
version (parentheses).

Hake Halibut Canary Snowcrab

Original 18.6 h (1) 12.4 months (1) 187.5 months (1) 38.7 months (1)
Regularized NA (NA) 0.7 days (507) 39.1 days (144) 68.1 days (17)
RWM default 4.5 h (4) 1.2 days (301) 14.3 days (394) 9.6 days (121)
NUTS default 2.1 h (9) 120 min (4466) 44.8 days (126) 2.8 days (421)
NUTS updated 15 min (74) 39 min (13 741) 12.5 h (10 772) 23 min (72 706)

This is extrapolated from the estimated effective samples per time. The “Original” and “Regularized” versions are the pilot chains using the default ADMB work-
flow of a single chain using the Metropolis algorithm (RWM). The last three rows are the regularized model versions and assume four parallel chains. The RWM
and NUTS “Default” chains use the inverted Hessian for the mass matrix (a tuning parameter), whereas the NUTS “Updated” chain uses an estimated mass ma-
trix from a previous run. Note that these are rough approximations because they are based on estimated effective sample size, which are highly variable.
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here was to identify causes for long run times, explore solutions,

and quantify the potential reduction. We found the biggest cause is

not model size or complexity, as often thought. Instead, overpara-

meterization (i.e. poorly-informed parameters) resulted in difficult

posterior geometries in the context of numerical integration. We

demonstrated that regularization (i.e. constraining the model with

priors or fixing parameters) coupled with well-tuned NUTS chains

run in parallel can reduce run time from months to hours, suggest-

ing that complex models with thousands of parameters could be

viable if they are developed and parameterized for Bayesian infer-

ence. Certainly, taking most existing models “off-the-shelf” will re-

quire some work by an analyst for fast run times. Nevertheless,

once this process is completed Bayesian inference is feasible for

many models in a management and research framework.

There are important challenges to adapting NUTS for use in

real-world stock assessments with a review process requiring fast

inference for alternative model scenarios. In this context, the big-

gest barrier is how to develop models that are flexible but remain

fast, which is a challenge because performance is sensitive to the

estimated mass matrix. Exploring alternative configurations,

which is relatively easy for Stock Synthesis models, may lead to

mismatched mass matrices and require redoing the regularization

process to a degree. More generally, regularization may be

straightforward for parameters where biological priors can be

specified, but for other parameters it is more challenging. For

instance, specifying a prior for unfished recruitment (R0) is diffi-

cult, and the effect of a prior in log space may be quite different

from in natural space (Punt and Hilborn, 1997; Thorson and

Cope, 2017). Similarly, double-normal selectivity parameters typ-

ically have uniform priors, but the implied prior on selectivity it-

self is difficult to predict and should be explored (Supplementary

Figure S2). Another example is the recruitment deviations in the

Halibut model (Figure 4, Supplementary Figure S1), regulariza-

tion of which had no clear technical solution within the Stock

Synthesis framework. However, these difficulties are not specific

to stock assessments and are a key part of ongoing research (e.g.

Van Dongen, 2006; Lele and Dennis, 2009; Gelman et al., 2017).

Our solution here was regularization of many parameters, for il-

lustrative effect, but we encourage analysts thoroughly investigate

the implications of, and justification for, regularization in real-

world cases. Thus, despite our success here, it is unlikely “flipping

the switch” results in fast run times for existing models because

regularization is an instrumental and necessary part of Bayesian

inference in stock assessments.

The necessary steps for regularization will vary by model, but

we have demonstrated some powerful tools to help guide this

process. First, we note that Bayesian modelling involves a process

where, among other steps, complexity should be slowly increased

(Gelman et al., 2014; Gabry et al., 2019). Here, we do the opposite

because we expect existing models to start overparameterized and

Figure 1. Diagnostic plots for the three slowest mixing parameters from the Hake model, comparing five RWM pilot chains to MLEs. The
diagonals show traces of the five chains. The scatterplots show pairwise posterior samples (black dots) and bivariate 95% confidence regions
(ellipses and single dots) from the inverted Hessian, which is used as the mass matrix, a key tuning parameter. The MCMC samples were
thinned by 1000 and the chains initiated from the mode.
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the goal is to constrain them. This complexity in assessment

models is often justified by authors because many versions of the

assessment are run during scientific review. In this context,

parameters poorly informed for one configuration may not be for

another, so it is “safer” to estimate them all, assuming no negative

effects on frequentist inference. Further, overly regularized mod-

els may fail to represent legitimate uncertainty (alternate hypoth-

eses about the population dynamics), and therefore lead to

incomplete information for fisheries management. However, cau-

tion should be taken with adding too much complexity with fre-

quentist inference as well (Subbey, 2018). Regularization, whether

fixing parameters or adding explicit priors, is a key but difficult

step in constructing a Bayesian assessment and we encourage ana-

lysts to thoroughly and thoughtfully explore how to best do this

process. We also note that the goal is to arrive at a model, which

is parameterized to be commensurate with the information in the

data and priors while also being useful for management purposes.

With that in mind, to adapt an existing model for Bayesian infer-

ence we recommend the subsequent steps in conjunction with the

adnuts R package (Monnahan, 2018), which streamlines the

workflow and provides additional features not available to com-

mand line execution:

(i) Incorporate all available informative priors on model

parameters.

(ii) Run parallel pilot RWM chains (at least three times)

started from parameter MLEs. A good starting place is

chains long enough to obtain 1000 samples after thinning

every 100 and 20% warmup, but a lower thinning rate for

slow models may be appropriate.

(iii) Identify slow mixing parameters using diagnostic plots

(e.g. Figures 2 and 3) and regularize or reparametrize as

appropriate.

(iv) Rerun pilot chains and compare frequentist estimates of

key management quantities to previous runs (e.g. Table 2).

(v) Repeat steps 2–4 until all parameters are mixing at a rea-

sonable rate.

(vi) Run parallel pilot chains with NUTS from previous poste-

rior draws, producing 500 samples with no thinning. If

divergences exist, identify the cause. Solutions include

more regularization or reparameterizing and increasing the

target acceptance rate.

(vii) Run inference chains using NUTS with 2000 samples, 200

warmup iterations, and no thinning, using updated mass

matrix estimated from the first NUTS analysis, which

improves efficiency but returns the same posterior.

(viii) Check for lack of non-convergence and lack of divergences,

then use these samples for inference.

We recommend the RWM algorithm for exploratory analysis be-

cause it worked better than NUTS in the presence of grossly mis-

matched mass matrices, but the NUTS algorithm should be used

for inference for two reasons. First, it was consistently faster for

Figure 2. Results from pilot chains for the Canary model. Shown are three selectivity parameters, which mixed particularly poorly because of
flat regions of the posterior. See Figure 1 caption for interpretation.
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the same model, particularly when an estimate of the mass matrix

was available from a previous run (Table 3). Second, it was better

able to explore extremely difficult geometries making it less sus-

ceptible to biased posteriors and additionally warned if bias may

be occurring, whereas RWM does not do this (Figure 4;

Betancourt, 2016; Monnahan et al., 2017). We believe NUTS is a

valuable tool for analysts performing Bayesian inference on stock

assessments in ADMB and recommend it as the default algorithm

for inference.

Our work here paves the way for future research on the use of

Bayesian inference for data-rich stock assessments, and we high-

light several avenues for fruitful extensions. First, the double-

normal selectivity is particularly challenging for MCMC samplers,

at least with the default priors found in most of the models.

Development of flexible selectivity parameterizations that are

more commensurate with Bayesian integration in addition to

maximum likelihood should be investigated. One intriguing op-

tion is a non-parametric or semi-parametric approach (Thorson

and Taylor, 2014; Xu et al., 2018). Additionally, random effects

are a flexible and powerful tool for modelling various biological

and fisheries processes, but their hypervariances are currently in-

estimable in ADMB and they are typically fixed at a constant

value (although see Thorson et al., 2015a). We thus encourage

investigations into the estimability of one or more hypervarian-

ces, and note that NUTS is particularly promising because it is ef-

ficient for complex mixed effects models (Betancourt and

Girolami, 2015; Monnahan et al., 2017). One technical difficulty

in ADMB is our proposed workflow uses the inverse Hessian as

the mass matrix (Supplementary Appendix A), but this matrix

may not be defined in a hierarchical model. One solution would

be dense mass matrix adaptation as part of the NUTS warmup

period, as done in Stan but not currently available for ADMB

(Supplementary Appendix A; Stan Development Team, 2017).

Clearly, this would be an important addition to ADMB, whether

hypervariances are estimated or not, as it would improve overall

speed and simplify the Bayesian workflow. Finally, we recom-

mend further investigation into the causes of differences (or lack

thereof) in inference between the two statistical paradigms

(Figure 6).

Assessment models are often adapted and improved within a

management framework of scientific review panels, sometimes

requiring updated results overnight. Given its speed advantage,

it is not surprising that maximum likelihood estimation is the

predominant method for inference, whereas long Bayesian run

times are an obstacle. Here, we showed that orders of magnitude

improvements in Bayesian run time could be achieved with reg-

ularization, faster algorithms, and parallel chains. Still, it takes

concerted effort to regularize a model, and run times are still

much slower than frequentist estimation. Despite this, we argue

that Bayesian inference still provides value for at least three rea-

sons. First, it provides a formal way to incorporate prior infor-

mation and evaluate the consequences of alternative

management actions for use in a decision analysis (Punt and

Hilborn, 1997). Second, it helps diagnose structural issues of a

Figure 3. Results from pilot chains for the Snowcrab model. Shown are select parameters, which mixed particularly poorly because of an
inverse Hessian that failed to accurately describe the underlying posterior, being either too small (first column) or too big (second column).
See Figure 1 caption for interpretation.
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model, which are undetectable just looking at MLEs and cova-

riances. We uncovered violations of the frequentist assumptions

in real stock assessments and highlight that despite these viola-

tions, ADMB still produced an invertible Hessian matrix, sug-

gesting this is insufficient evidence a model meets its

assumptions. Because of the unique perspective Bayesian

integration gives into a model, we argue it is a useful tool for de-

veloping more statistically robust models in the frequentist par-

adigm. Finally, the choice of paradigm may or may not lead to

different management advice (Figure 6; Stewart et al., 2013), al-

though this is not known a priori. We do not argue that one par-

adigm is better, but rather highlight the value in comparing

inference between the two methods on the same stock assess-

ment. Fortunately, combining powerful Bayesian integration via

NUTS and ever-increasing computational power, reasonable

run times are possible even for the largest, slowest fisheries as-

sessment models. This opens the door to future research to im-

prove stock assessment models and, where desirable, applied

inference in management scenarios.

(a)

(b)

(c)

Figure 4. Posterior samples from two adjacent recruitment
deviations in the regularized Halibut model with the priors for these
two parameters removed (i.e. partially regularized). (a) Is from the
RWM algorithm whereas (b) and (c) are the NUTS for two different
levels of the target acceptance rate (d, and called adapt_delta in
adnuts). Black points are posterior samples, whereas red points are
divergent transitions (only outputted by NUTS, see online color
version). In (a) and (b) the algorithms cannot generate samples from
a subset of the posterior, which leads to biased estimates of these
parameters, but in (b) NUTS with the default of d¼ 0.8 warns about
this potentially bias with divergences. By increasing d to 0.98 the
algorithm eliminates divergences and samples from a wider region of
the posterior. The ellipse shows the 95% credible interval for the
prior assigned to these parameters during regularization, but which
is not applied here but eliminated these sampling difficulties in the
final model with minimal effect on management quantities.
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Figure 5. Improvement through regularization for the RWM pilot
chains. Effective sample sizes estimated before and after
regularization using five chains with 3000 samples after thinning
every 1000th sample and discarding the first 25% as a warmup
period (thus 7500 nominal samples). The smallest effective sample
size defines the mixing rate and thus efficiency of the chains. The
parameter type is differentiated by point colour and shape. x-axis
values are jittered for visual clarity.
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Supplementary data
Supplementary material is available at the ICESJMS online ver-

sion of the manuscript.
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